p34cdc2 acts as a lamin kinase in fission yeast
نویسندگان
چکیده
The nuclear lamina is an intermediate filament network that underlies the nuclear membrane in higher eukaryotic cells. During mitosis in higher eukaryotes, nuclear lamins are phosphorylated by a mitosis-specific kinase and this induces disassembly of the lamina structure. Recently, p34cdc2 protein kinase purified from starfish has been shown to induce phosphorylation of lamin proteins and disassembly of the nuclear lamina when incubated with isolated chick nuclei suggesting that p34cdc2 is likely to be the mitotic lamin kinase (Peter, M., J. Nakagawa, M. Dorée, J.C. Labbe, and E.A. Nigg. 1990b. Cell. 45:145-153). To confirm and extend these studies using genetic techniques, we have investigated the role of p34cdc2 in lamin phosphorylation in the fission yeast. As fission yeast lamins have not been identified, we have introduced a cDNA encoding the chicken lamin B2 protein into fission yeast. We report here that the chicken lamin B2 protein expressed in fission yeast is assembled into a structure that associates with the nucleus during interphase and becomes dispersed throughout the cytoplasm when cells enter mitosis. Mitotic reorganization correlates with phosphorylation of the chicken lamin B2 protein by a mitosis-specific yeast lamin kinase with similarities to the mitotic lamin kinase of higher eukaryotes. We show that a lamin kinase activity can be detected in cell-free yeast extracts and in p34cdc2 immunoprecipitates prepared from yeast cells arrested in mitosis. The fission yeast lamin kinase activity is temperature sensitive in extracts and immunoprecipitates prepared from strains bearing temperature-sensitive mutations in the cdc2 gene. These results in conjunction with the previously reported biochemical studies strongly suggest that disassembly of the nuclear lamina at mitosis in higher eukaryotic cells is a consequence of direct phosphorylation of nuclear lamins by p34cdc2.
منابع مشابه
Fission yeast pheromone blocks S-phase by inhibiting the G1 cyclin B-p34cdc2 kinase.
Yeast pheromones block cell cycle progression in G1 in order to prepare mating partners for conjugation. We have investigated the mechanism underlying pheromone-induced G1 arrest in the fission yeast Schizosaccharomyces pombe. We find that the G1-specific transcription factor p65cdc10-p72res1/sct1 which controls the expression of S-phase genes is fully activated in pheromone, unlike the analogo...
متن کاملInteraction of cdc2 and rum1 regulates Start and S-phase in fission yeast.
The p34cdc2 kinase is essential for progression past Start in the G1 phase of the fission yeast cell cycle, and also acts in G2 to promote mitotic entry. Whilst very little is known about the G1 function of cdc2, the rum1 gene has recently been shown to encode an important regulator of Start in fission yeast, and a model for rum1 function suggests that it inhibits p34cdc2 activity. Here we pres...
متن کاملp34cdc2 kinase activity is maintained upon activation of the replication checkpoint in Schizosaccharomyces pombe.
All eukaryotes use feedback controls to order and coordinate cell cycle events. In Schizosaccharomyces pombe, several classes of checkpoint genes serve to ensure that DNA replication is complete and free of error before the onset of mitosis. Wild-type cells normally arrest upon inhibition of DNA synthesis or in response to DNA damage, although the exact mechanisms controlling this arrest are un...
متن کاملp56chk1 protein kinase is required for the DNA replication checkpoint at 37C in fission yeast
the timing of mitosis is determined by a gradual change Stefania Francesconi1, Muriel Grenon, in the wee1/cdc25 ratio. This ratio influences the cell size Dominique Bouvier and Giuseppe Baldacci at division and maintains the dependence of mitosis on IFC 1, Institut de Recherche sur le Cancer, CNRS UPR 9044, the completion of DNA replication (Enoch and Nurse, 7 rue Guy Moquet BP 8, 94801 Villeju...
متن کاملA complex containing p34cdc2 and cyclin B phosphorylates the nuclear lamin and disassembles nuclei of clam oocytes in vitro
Cell-free extracts prepared from activated clam oocytes contain factors which induce phosphorylation of the single 67-kD lamin (L67), disassemble clam oocyte nuclei, and cause chromosome condensation in vitro (Dessev, G., R. Palazzo, L. Rebhun, and R. Goldman. 1989. Dev. Biol. 131:469-504). To identify these factors, we have fractionated the oocyte extracts. The nuclear lamina disassembly (NLD)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 112 شماره
صفحات -
تاریخ انتشار 1991